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SUMMARY 

A finite element method is given to obtain the numerical solution of the coupled equations in velocity 
and magnetic field for unsteady MHD flow through a pipe having arbitrarily conducting walls. Pipes of 
rectangular, circular and triangular sections have been taken for illustration. Computations have been 
carried out for different Hartmann numbers and wall conductivity at various time levels. It is found that 
if the wall conductivity increases, the flux through a section decreases. The same is the effect of 
increasing the Hartmann number. It is also observed that the steady state is approached at a faster rate 
for larger Hartmann numbers or larger wall conductivity. Selected graphs are given showing the 
behaviour of velocity, induced magnetic field and flux across a section. 
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INTRODUCTION 

The study of the flow of conducting fluids in the presence of transverse magnetic fields has 
attracted attention owing to its applications in such diversified fields as astrophysics, geology, 
power generation, flowmetry, thermonuclear reactor technology, etc. it is, therefore, not 
surprising that a lot of theoretical and experimental work has been carried out in this 
direction during the last twenty years. In general, the problems of MHD flow are extremely 
complex, and analytic solutions are out of the question. However, in some simple cases, 
exact solutions have been found. The axial flow through a straight pipe in the presence of a 
uniform transverse magnetic field is one such example.‘-’’ In most of these cases, the walls 
have been taken as non-conducting, although some authors have also considered perfectly 
conducting walls or a combination of non-conducting and perfectly conducting walls. The 
geometry of the section has been taken as a circle, rectangle, ellipse, sector, etc. To deal with 
more intractable cases, numerical methods are the only alternative. 

The authors have applied numerical methods such as FDM and FEM to steady MHD 
channel flow problems with non-conducting and arbitrarily conducting  wall^.'^^^ Although 
steady flows have been studied extensively, only a few papers have appeared on unsteady 
flows. Gupta and Singh16*17 obtained exact solutions for unsteady flows in some special cases. 
Gupta18 has obtained solutions for unsteady flow with small Hartmann number. Gupta and 
Mittal” gave exact solutions for unsteady flow through a pipe with section as an annular 
region. The authors have applied the Crank-Nicolson and alternating direction implicit 
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methods to obtain numerical solution of unsteady flow through a rectangular pipe.” 
Recently, Wu2‘ has applied the finite element method to unsteady flow between two infinite 
parallel planes. However, his assumptions are not always valid in practice. 

In all the references cited above for unsteady flows, the walls are taken non-conducting. 
When the wall conductivity is different from zero, the problem is much more difficult. The 
present paper deals with the application of the finite element method to unsteady MHD flow 
through a straight pipe of infinite length with section of an arbitrary shape and arbitrary wall 
conductivity. The authors have not come across even a single paper dealing with this case. 

First of all, the time variable has been eliminated by integration. For the resulting system 
of equations, a variational principle has been found. To this the Ritz FEM is then applied. 
Calculations are carried out step by step in the time direction till the steady state is reached. 
Pipes with section as a rectangle, a circle and an equilateral triangle are taken for illustration. 
Computations are carried out for various Hartmann numbers and wall conductivity at 
various time levels. It is found that if the wall conductivity and/or Hartmann number are 
increased, the flux through a section is reduced and the steady state is approached at a faster 
rate. 

BASIC EQUATIONS 

Let the co-ordinate system be chosen such that the X-axis is along the applied magnetic field 
B,, the Y-axis is perpendicular to it and lying in a section, and the Z-axis is along the axial 
direction in which the flow is taking place. Then for viscous and incompressible fluid, the 
governing equations in the MKS system 

where p, q, (T are the density, coefficient of viscosity and electric conductivity of the fluid. 
V,(X, Y, T) and B,(X, Y, T) are the axial velocity and the induced magnetic field, p is the 
pressure, T the time and po is a constant which has the value 4 ~ r  X in the MKS system. 
V2 is the two-dimensional Laplacian operator in the XY-plane. The boundary conditions on 
V, and BZ are 

aBZ uB, - + 7 - = 0 
dN u h VZ = 0, on the boundary 

where N is the outward normal to the boundary of the section, (i’ is the electric conductivity 
of the walls and h is the thickness of the walls which is taken to  be small. The first condition 
is the no-slip condition, the second has been taken from Reference 4. The initial conditions 
depend upon how the motion starts initialty. For example, if the motion starts from rest, the 
initial conditions become 

V,=O, BZ=O attime T=O 

Let us introduce the following non-dimensional variables and parameters: 

V =  Vz/Vo, Vo=Ka2/r), B =Bz/VopoJ(a77) 
x = X/a ,  y = Yla, M 2  = B&2u//rl, A = aala’h 

R = pa’V,/q, R, = Voayou, T = ta/Vo, f ( t )  = F(at/V,J 
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where M, R, R ,  are the Hartmann number, Reynolds number and magnetic Reynolds 
number, respectively. The pressure gradient dp/dZ = -KF(T), where F ( T )  is a known 
function of time and a is the characteristic length. Then the governing equations, the 
boundary conditions and the initial conditions are reduced to  the following non-dimensional 
form: 

V=O, ondD, t z 0  (3) 

d B  
-+AB=O, ondD, t z O  
an (4) 

V(x, y, 0) = 0, in D (5 )  

B(x,  y, 0) = 0, in D (6) 
where D represents the section of the pipe in non-dimensional form with aD as the 
boundary, n is the outward normal and V2 the two-dimensional Lapiacian operator in the 
xy-plane. Notice that for non-conducting walls at = 0. So h = 00 and the boundary condition 
on B becomes B = 0. In the other extreme case when the walls are perfectly conducting 
d = 

As already pointed out, the exact solution of the above equations is not possible in 
general. However, in some special cases with A =*, R = R,, the exact solutions have been 
obtained . 16,17~19 These are too complicated to be given here. Computationally, these solu- 
tions are not of much utility as the series summations are quite time consuming and at each 
point the series have to be summed up separately. Keeping these difficulties in mind, Singh 
and LalZ0 applied the Crank-Nicolson and AD1 methods for a rectangular pipe with 
non-conducting walls. Although the AD1 method proves to  be quite efficient for the 
rectangular geometry, for an arbitrary boundary it cannot compete with the FEM. 

or A = 0 and the boundary condition becomes dB/an = 0. 

VARIATIONAL PRINCIPLE 

In order to apply FEM, we have first integrated (1) and (2) with respect to time and then 
found a variational principle for the resulting system. This alternative to  the usual procedure 
leads to a simpler variational principle and has been used successfully by Verruijt" for 
solving a two-dimensional diffusion equation. 

So, integrating (1) and (2) with respect to t from t" to  f"" and assuming linear variation of 
V, B and f(t)  in [t", tntl], where At" = t"+' - t" is small, we finally get 

aB" 

a d X  V" ] i n D  
vz V" + M -  = -f" + p" ( v" - V") 

V2B* + M -  = Y n ( ~ *  - B") 
ax 

aB" vz V" + M -  d X  = -f" + p" (V" - V")] 

1'"" a V" 
ax 

V'B* + M -  = Y n ( ~ *  - B") 

where V", B", f* are the average values of V, B and f in [t", t"+'] and 

p" = 2R/At", y" = 2R,/Atn (9) 
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The boundary conditions on V" and B" become 

Assuming that V", B" at time t" are known, the problem now reduces to  solving (7) and (8) 
subject to boundary conditions (10) and (11). After knowing V" and B", the values at time 
tn+' are calculatcd from 

V"+l= 2V* - V", BnC1 = 2B* - B" (12) 

Since the values p, Bo at time to = 0 are known from the initial conditions, we can adopt 
the above procedure to find values at t ' ,  t2, t3,  and so on. 

After some tricky and lengthy calculations, it is found that the problem of solving (7) and 
(8) subject to (10) and (11) is equivalent to  extremizing the functional 

I = J J [ V*gn -$n(V*)2-t(~V*)2 - hnB* + $ y " ( ~ * ) ~  

D 

dD+iA I,, (B*)2ds 
ax 

where, 

FINITE ELEMENT FORMULATION 

Let us divide the region D into E linear triangular elements which lead to, say, a total 
number of m nodes, out of which rno are internal and the remaining rn-m, are the 
boundary nodes. Over the closed domain fi = D UdD, we approximate V" and B* by 

where VZ, €3: are the nodal values and Nq(x, y) are the shape functions. Notice that VZ 
vanishes for q=(m,+l ) ( l )m due to  the boundary conditions. So the unknowns are VZ, 
q = l ( l )mo and BZ, q = l ( l )m,  i.e. in all m +rno in number. For the non-conducting walls 
BZ, q = (mo+ l)(l)rn are also zero. So in that case the total number of unknowns becomes 
2m0. 

Substituting (15), (16) in (13) and extremizing I with respect to  the unknown nodal values, 
i.e. using 

dI/aVt = 0, q = l(l)rno; dI/dBZ = 0, q = l(1)m 
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we finally get the following system of equations 
m0 m 

(a,+p2b,)V:+a 2 c,Bz=r;7 p = l ( l ) m o  
q = l  q = l  

m m0 

q = l  q = l  
C (a, + ynb,  + A & ) B ~  + a C %v: = s;, p = l ( l )mo 

where a,, b,, c,, &, rg, sg are given by 

% =  ax 
D 

D 
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Notice that the matrices [%I, [b,], [h] and [&I are independent of n. So they can be 
computed only once and used for all steps in the time direction. The contributions to the first 
three matrices from a typical element e with nodes i, j ,  k are given by 

bh = (1 + 6,) Ae/12 = b,, 
a& = (bEbt+ c;c@M = a& 

c&=(b;- b:) A'/3=-cq, 

where Ae is the area of the element e and 

bf = (yj - Yk)/2 Ae7 Cf = (Xk - 5)/2 be, etC. 

with (xi, yi) as the co-ordinates of the node i. The contribution to [&] comes only from 
those elements which have at least two nodes, say i and j ,  on the boundary. Then 

d;,q = (1 + &)L/6, p, q = i, i (21) 

where lii is the distance between the nodes i and j .  The contributions to the vectors [r;] and 
[s:] from e are found to be 

p = i, j 7  k (22) 
(r,")e = 4f" + p" 1 (1 + &)c] Ae/12 [ q=i,i,k 

(s;Y = [yn q=i,j.k (1+S,)B;]Ae/12 
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The elementwise assembly of the above matrices and vectors can be done by well known 
 method^.^^-^^ For the matrices it is to be done only once and used for all time steps. The 
vectors, however, are to be evaluated after each time step. 

NUMERICAL SOLUTION AND DISCUSSION 

To solve (17) and (18) we first eliminate V: from (17) and (18) and solve the resulting 
system for B t .  Vt is then known from (17). As already mentioned, the coefficient matrices 
are to be evaluated only once and used for all time steps. The right hand sides, however, are 
time dependent and evaluated after every time step. Knowing V" and B*, the values at time 
tnil are known from (12). Since the initial values t o = O  are known from the initial 
conditions, we can proceed step by step in the time direction and evaluate V", B" for 
n = 1 , 2 , 3 , .  . . . As n -+to, we get the steady state solutions. We have illustrated the 
procedure by taking pipes of rectangular, circular and triangular cross-sections. Velocity, 
induced magnetic field and the flux across the section have been evaluated and graphed at 
various time levels for different values of M and A. 

For all calculations we have chosen R = R ,  = 1. Also for the transient flow with constant 
pressure gradient we have f(t) = 1. However, for pulsating flows f ( t> may be taken as a 
periodic function of time. In our case, we have assumed that initially the fluid was at rest and 
then started by applying constant pressure gradient. As t + w ,  we get the steady state 
solutions on which extensive literature exists particularly for non-conducting walls. So it has 
been possible to  check the accuracy of the result in these special cases. For rectangular and 
circular pipes with non-conducting walls (A = w) the steady state exact solutions have been 
found by Shercliff' and Gold.3 Our results agree with them to roughly three significant digits. 

Rectangular pipe 

We have taken a square pipe bounded by the lines x = *l, y = +l.  The whole section has 
been divided into 128 elements with 49 internal nodes and 32 boundary nodes. Figures 1 
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Figure 1. Velocity along y = 0, 0 5 x 5 1 (rectangular pipe) 
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Figure 3. Induced magnetic field along y = 0.0 5 x 5 1 (rectangular pipe) 

and 2 depict the behaviours of velocity and induced magnetic field along the x-axis 
( y  = 0,0 5 x 5 1). Figure 3 gives the flux at different times for various values of M and A. 

Circular pipe 

The section x2+ y 2 s  1 has been divided into 54 elements with 19 internal nodes and 18 
boundary nodes as shown in Figure 4. The mesh generation is done by the method suggested 
in Reference 25. Figures 5-7 give the velocity and induced magnetic field along the x-axis 
( y  = 0 , O s . x  5 1) and the flux across a section for various values of M and A at different 
times. 
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Figure 3. Flux through a section (rectangular pipe) 
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Figure 4. Section of circular p i p  

Figure S. Velocity along y = 0. 0 5.x 5 1 (circular pipe) 
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Figure 6. Induced magnetic field along y = 0, 0 5 x s 1 (circular pipe) 

Equilateral triangular pipe 

We take a section of the pipe bounded by the lines y = 0, y = * J3(x f 1/2). The whole 
section is divided into 81 elements by lines parallel to the sides. This gives in all 28 internal 
and 27 boundary nodes. The velocity and induced magnetic field along the line y = 
(x + 1/2)/J3 and the flux across a section are as given in Figures 8-10. 

Discussion 

From the above results for the pipes of three different cross-sections we make the 

(i) As the Hartmann number increases (keeping X fixed), the velocity profile shows a 
following observations: 

M - O , h =  arb. 

TIME LEVELS - 
0 I f ~ ~ ~ ~ 1 ' '  

0 20 40 60 00 ' 10 

Figure 7. Flux through a section (circular pipe) 
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Figure X. Velocity along y = (x t 1/2)/J3 (triangular pipe) 

flattening tendency and the net flux across a section decreases. This is a well known 
characteristic o f  MHD flows. The magnetic lines of force act like stretched rubber 
bands which create hindrance to the flow, thereby flattening the velocity profile and 
reducing the flux. Also with the increase in M, the steady state is approached at a 
faster rate. 

(ii) As the wall conductivity increases or A decreases (keeping M fixed), the flux 
decreases. Similar observations have been made in Reference 27 for MHD flows at 

Figure 9. Induced magnetic field along y - (x r 1/2)/J3 (triangular pipe) 
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TIME LEVELS - 
0 
0 10 20 30 
Figure 10. Flux through a section (triangular pipe) 

M- 
Figure 11. Combined effect of wall conductivity and Hartmann number on flux (rectangular pipe) 
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(iii) 

( id  

high M. The authors have also come to the same conclusion for steady state flows in 
Reference 14. The explanation of this phenomenon is that as the wall conductivity 
increases, more and more of the electric currents return through the walls rather than 
through the fluid itself. So the Lorentz forces tend to oppose the motion in the entire 
section thereby reducing the flux. This may be of some interest in some prospective 
thermonuclear reactors in getting lithium through magnetic fields. In a copper pipe 
the flux will be less than that in a steel pipe. 
The combined effect of Hartmann number and wall conductivity on the flux is shown 
in Figure 11 for a rectangular pipe at time level 100. The effect at other time levels is 
the same. As was expected for M = 0, wall conductivity has no effect on flow. As 
either M or wall conductivity increases (or A decreases) the flux is reduced. The same 
remains true for pipes of circular and triangular cross-sections. 
Comparing the flux per unit area or the average velocity for the three types of sections 
described above, we find that the average velocity is maximum for the rectangular 
pipe, and minimum for the triangular pipe. 
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